
This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of Energy under contract DE-

AC04-94AL85000.

Investigating the balance between capacity and capability

workloads across large scale computing platforms
Mahesh Rajan, Courtenay Vaughan, Robert Leland, Douglas Doerfler, Robert Benner

Sandia National Laboratories

P.O. BOX 5800, Albuquerque, NM 87185

Abstract -- The focus of this paper is on the effectiveness of HEC (high-end computing) systems

on meeting engineering and scientific analysis needs. Performance measurement and analysis of

the applications constituting the work load, on a large commodity InfiniBand cluster, and, on a

large custom Cray XT3, is used to assess the merits of the competing HEC architectures. Those

applications with communication intensive algorithms show a factor of 2 to 10 better (on 1024

processors) performance on XT3, making XT3 ideal for long, large capability simulations.

However, applications with moderate to low communication need have comparable performance

on the cluster and these commodity clusters eminently meet the need for higher volume capacity

computing cycles. We analyze the reasons for the performance difference seen between the two

systems. Since the single cpu wall clock execution time is very close between the two systems,

we use parallel efficiency as a measure, to analyze optimal workload mapping on our capability

and capacity computing resources.

Introduction:

Understanding the performance of scientific applications on high performance computers

is important for setting resource management policies. Application performance can be

influenced by the architecture of the computer, software characteristics, and characteristics

introduced by the simulation being run. The same application may be used to run very large

capability class simulations or used with a smaller number of processors in several runs in a

capacity context to cover a range of parameter space for analysis like uncertainty quantification.

In the context of current and future major investments in capacity and capability computing

systems, it is useful to analyze mapping of workload against the available computing resources.

Current HEC systems vary in the node/processor architecture, the inter-connect, and, system

software. IDC classification of HEC systems into two broad categories [1], namely, capability

and capacity, is widely used. However the demarcation is not strictly defined. Moreover

applications and analysis that are targeted for these HEC systems again cross the definition

boundaries. Our experience with a number of applications and analysts needs, clearly indicate

need for large capacity compute cycles. At the same time capability computing often addresses

need for interesting and new science that were often not undertaken previously due to lack of

compute power. A broad guide line for classifying capability class simulations currently under

vogue, include [2]:

1) Simulations that use a significant fraction of the total nodes installed

2) Simulations that require large memory, I/O, and storage

3) Simulations with stringent time-to-solution and short design cycle times

4) Some combination of the above analysis characteristics making it the only means of

achieving the goal

In this context, both from a management concern for providing the correct investment to meet an

institutions need as well as from an analyst desire to extract optimal performance, there exists a

strong need to understand effectiveness of different classes of HEC systems on meeting the

engineering and scientific analysis needs.

 - 2 -

Table 1 is the result of a usage survey done few years ago, listing the top few applications

and node-hour percentage usage. The current fraction is based on usage logs and estimated

future fraction is based on user surveys reflecting programmatic needs. The recent availability of

large capability computing systems like ASC Red Storm at Sandia and ASC Purple at LLNL has

enabled analysts to conceive new approaches and analysis that were if not impossible, were

difficult to undertake on a routine basis. The statistics of node-hours for such large capability

class simulations are just beginning to emerge. However, the question of appropriate allocation

of compute cycles on capability and capacity computing systems when the demand for total

node-hours exceeds available resources is an area of much interest.

In this paper we have measured application scaling characteristics so that efficiency gains

of a capability class system for each application guides the selection and allocation of limited

capability computing cycles. A large InifiniBand cluster with over 8000 processors and a large

Cray XT3 with over 20000 processors are used to measure performance of seven applications of

interest. The measured parallel efficiency on both these systems is used to understand impact of

architectural balance. Parallel efficiency works as a useful measure because the single cpu

performance is very close. In some cases, we used strong scaling with engineering models that

do not lend to easy construction of weak scaling inputs. It is recognized that scaling behavior is

data set dependent and often bigger models permit scaling to a larger number of processors.

However, the performance ratio between the two systems provides broad guidelines on optimal

usage of both the systems to meet capability and capacity computing node-hour demands.

Table 1. SNL application node-hour usage and projections

Code Use Numerical Method Current

Fraction

Future

Fraction

Presto Crash/ Solid dynamics FEM, explicit time

integration

34.4% 15%

Salinas Vibration/ Structural

dynamics

FEM, spectral analysis 15.8% 10%

LAMMPS Molecular dynamics FFT, sparse matrix

methods

12.8% 10%

DSMC Plasma dynamics Discrete Simulation Monte

Carlo

10.4% 10%

CTH Penetration/

Hydrodynamics

Control volume, explicit

time integration

7.4% 10%

ITS Radiation transport Monte Carlo .08% 15%

SAGE Hydrodynamics Finite Volume 0.0% TBD

 TOTAL 81% 70%

In the following sections we first provide a short description of each application and the

analysis that was benchmarked on the two systems. The wall clock run time and parallel

efficiency plots show the scaling characteristics of the applications. With T denoting wall clock

run time, we define parallel efficiency at p processors as: (Tref/Tp)/(p/ref) for strong scaling and

as (Tref/Tp) for weak scaling. Here, ref, denotes the minimum number of processors at which the

problem fits in memory and Tref may refer to a parallel implementation run time on a single

 - 3 -

processor where appropriate. Our approach is similar to that of Oliker, et.al. [3] in so far as we

investigate the performance of full applications constituting most of the workload (Salinas was

omitted and SIERRA/Fuego was included in our scaling studies) shown in Table 1. The benefit

of Red Storm’s Light Weight kernel and fast network performance has been presented by Hoise,

et.al [4] considering application performance and performance models.

Target Architecture Description:

The Red Storm machine at Sandia National Laboratories in Albuquerque, New Mexico

currently consists of 12,960 dual-core nodes with a 2.4GHz Opteron CPU with 2, 3, or 4 GB of

main memory and a Cray SeaStar NIC/router attached via HyperTransport. The network is a

27x20x24 mesh topology, with a peak bidirectional link bandwidth of 9.6 GB/s. The nearest

neighbor NIC to NIC latency is specified to be 2 µsec, with 5.4 µsec measured MPI latency. The

compute nodes run the Catamount lightweight kernel, a follow-on to the Cougar/Puma design

used on ASCI Red. The I/O and administrative nodes run a modified version of SuSE Linux.

The Cray-designed SeaStar communication processor / router is designed to off-load network

communication from the main processor. It provides both send and receive DMA engines, a

500MHz PowerPC 440 processor, and 384 KB of scratch memory. Combined with the

Catamount lightweight kernel, the SeaStar is capable of providing true OS-bypass

communication. The Red Storm platform utilizes the Portals 3.3 communication interface,

developed by Sandia National Laboratory and the University of New Mexico for enabling

scalable communication in a high performance computing environment. The Portals interface

provides true one-sided communication semantics. Unlike traditional one-sided interfaces, the

remote memory address for an operation is determined by the target, not the origin. This allows

Portals to act as a building block for high performance implementations of both one-sided

semantics (Cray SHMEM) and two-sided semantics (MPI-1 send/receive). The Cray XT3

commercial offering was nearly identical to the Red Storm machine installed at Sandia, before

the recent upgrade to dual core nodes and newer SeaStar NIC. The notable difference is that

while the Red Storm communication topology is a 3-D mesh, the XT3 utilizes a 3-D torus

configuration. The difference is to allow a significant portion of the Red Storm machine to

switch between classified and unclassified operation.

The Thunderbird system was purchased for coordinated use as a production capacity

computing cluster in a technical collaboration with Dell Computer Corporation (Computational

nodes), with Cisco Systems (high-speed message passing interconnect), with Force10

Networking (Ethernet interconnect), and with the Technology Integration Group

(vendor/integrator). Thunderbird is comprised of 4480 Dell PowerEdge 1850 commodity servers

with 3.6GHz Intel EM64T dual-processors, with 6GB per node memory, linked with an

InfiniBand message passing interconnect. The interconnect is a dual layer hierarchical fat tree

InfiniBand network. There are 140 Compute racks, each with two 24 port InfiniBand 4x

switches and 32 compute nodes. There are 6 Ethernet racks with a single Force10 E1200 switch

and Eight IB racks with a single 288 port IB 4x switch. All MPI traffic is conducted across the

InfiniBand network and all I/O is done across the Ethernet network. Each 24 port IB switch has

16 compute nodes connected to it and a single connection to each of the eight 288 port IB

switches producing a 2-to-1 over subscription. There is a core E1200 switch that is connected

via 4 channel bonded 10GigE ports to the remaining 5 E1200s. 4 of the 5 lower level ethernet

switches have 1024 compute nodes connecting at half GigE bandwidth and the remaining switch

has 384 compute nodes also at half bandwidth. Thunderbird’s software was recently upgraded to

 - 4 -

OpenFabric Enterprise Distribution (OFED) and OpenMPI - Linux-based open source software

stack qualified by the OpenFabrics Alliance to operate with multi-vendor InfiniBand hardware

and implement open source Message Passing Interface (MPI) protocol. Table 2 summarizes the

important architectural characteristics of Red Storm and Thunderbird. All the applications were

compiled on both systems with PGI 6.2.3, except for the SIERRA/Fuego for which the Intel

compiler 9.1 was used on Thunderbird.

Table 2. Red Storm and Thunderbird architectural highlights
Name Arch Network

Topology

Total

P

P/

Node

Clock

(GHz)

Peak

(GF/s/P)

Streams

BW(GB/s/P)

MPI

Lat

(µsec)

MPI BW

(GB/s/P)

Red Storm AMD

Opteron

Mesh / Z-

torus

25,920 2 2.4 4.8 2.5 5.4 2.1

Thunderbird Intel

EM64T

Fat tree 8960 2 3.6 7.2 3.8 6 0.468

Applications and Benchmarks:

a) SIERRA/Fuego:

This application is an integral part of the SIERRA [5] multi-mechanics software

development project at Sandia. Fuego represents the turbulent, buoyantly driven incompressible

flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of

the simulation software. Syrinx represents the participating-media thermal radiation mechanics.

Calore represents the heat transfer within an object. Domino, et.al.[6] describe the details of the

governing equations, discretization, decomposition and solution procedures. The general

coupling strategy for the suite of abnormal-thermal environments is provided in Figure 1.

SIERRA/Fuego, SIERRA/Syrinx, SIERRA/Calore depend heavily on the core architecture

developments provided by SIERRA for massively parallel computing, solution adaptivity, and

mechanics coupling on unstructured grids.

Figure 1. Abnormal-thermal coupling analysis with SIERRA/Fuego

In the application chosen for this paper, coupled fire/thermal response predictions for a

weapon-like calorimeter is validated for a quiescent fire representative of a transportation

accident scenario. The model constructed was used to compare numerical predictions against

experimental data. Temperature measurements were used to validate the coupled

Fuego/Syrinx/Calore predictions. The model consists of fluids (Fuego), radiation (Syrinx) and

object heat transfer (Calore) meshes along with an output mesh. The main Fuego fluid mesh for

the scaling study was constructed with a 1M element model fluid mesh. Similar mesh sizes were

used in the Syrinx radiation calculations. The Calore mesh size is much smaller as it contains

 - 5 -

only the outer shell of the object. The output mesh is a vertical slice through the centerline of the

fire that is only one cell thick. The simulations solve the governing set of complex coupled

equations whose solution over a broad range of time and length scales is sought. This

complexity in the model and the long run times to resolve the fire for 60-90 seconds could only

be carried out on massively-parallel capability class supercomputers. Figure 2 presents side-by-

side the execution time plot and the parallel efficiency plot. The most dominant computation,

namely the fluid region solve is plotted. The reason that Red Storm scales better at 256 and 512

processor counts is because of the better communication to computation balance, that is required

for the implicit ML solver used for the fluid solve. As this is a strong scaling run, the work per

processor decreases and therefore it stresses the communication fabric over the several iterations

required for the implicit solution.

SIERRA/Fuego; Execution Time (fluid Region)

Strong Scaling With 1.1M element Fluid Grid

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

1:40:48

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Number of Processors

E
x

e
c

u
ti

o
n

 T
im

e
,
h

r:
m

i:
s

e Thunderbird

Red Storm

SIERRA/Fuego; Parallel Efficiency (fluid Region)

Strong Scaling with 1.1M element Fluid Grid

0.00

0.20

0.40

0.60

0.80

1.00

1.20

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Number of Processors

P
a
ra

ll
e
l
E

ff
ic

ie
n

c
y

Thunderbird

Red Storm

Figure 2. SIERRA/Fuego Performance on Red Storm and Thunderbird

b) ITS Monte Carlo radiation transport:

The INTEGRATED TIGER SERIES (ITS) code is an evolving Monte Carlo radiation transport

code that has been used extensively in weapon-effect simulator design and analysis, radiation

dosimetry, radiation effect studies and medical physics research. Many individuals from the

DOE labs and NIST have been involved over the years in the development and enhancement of

ITS. Physical rigor for the analysis is provided by employing accurate cross sections, sampling

distributions, and physical models for describing the production and transport of the

electron/photon cascade from 1.0 GeV down to 1.0 keV. The ITS code is capable of analyzing

particle transport through both combinatorial geometry models and CAD models. It also has

been significantly enhanced to permit adjoint transport calculations.

For the purposes of this paper we have analyzed the performance using as input, data

from a real satellite model. The physical problem solved takes advantage of the MITS mutli-

group/continuous energy electron-photon Monte Carlo transport code’s capability to address

realistic three-dimensional adjoint computations. The run times for simulations for a complex

combinatorial geometry model using conventional, or forward, transport are prohibitive and

hence the adjoint calculations used in our satellite model. Figure 3 presents side-by-side the

execution time plot and the parallel efficiency plot for ITS. The weak scaling runs were set up

with 1.6 Million histories per processor. The difference in parallel efficiency for this application

can be directly related to the MPI bandwidth, as we have developed a performance model [7]

that easily explains the increased overhead for the master/slave communications at the end of

each batch of history computations. As noted in Ref. [7] the algorithm for gathering the statistics

after each batch has been modified in newer version of ITS to improve parallel scaling even on

systems with lower communication performance. However, for this exercise we present the

results from the older algorithm as it exaggerates the difference between Thunderbird and Red

 - 6 -

Storm, helping to point out the importance of communication bandwidth on scalability that may

not be apparent when using a few hundred processors. For Megabyte size messages that are sent

from the slave processor to the master processor in a serial fashion, the factor of 3X better

bandwidth on Red Storm explains the differences in parallel efficiency observed.

ITS; Execution Time With Starsat CG Model

Weak Scaling with 1.6M histories/PE

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000

Number of Processors

E
x

e
c

u
ti

o
n

 T
im

e
,

S
e

c
s Thunderbird

Red Storm

ITS; Parallel Efficiency With Starsat CG Model

Weak Scaling with 1.6M histories/PE

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

Number of Processors

P
a
ra

ll
e

l
E

ff
ic

ie
n

c
y

Thunderbird

Red Storm

Figure 3. ITS Performance on Red Storm and Thunderbird

c) LAMMPS:

LAMMPS[8] is a classical molecular dynamics code that models an ensemble of particles

in a liquid, solid, or gaseous state. It can model atomic, polymeric, biological, metallic, granular,

and coarse-grained systems using a variety of force fields and boundary conditions. LAMMPS

runs efficiently on single-processor desktop or laptop machines, but is designed for parallel

computers. It will run on any parallel machine that compiles C++ and supports the MPI

message-passing library. This includes distributed- or shared-memory parallel machines and

Beowulf-style clusters. LAMMPS can model systems with only a few particles up to millions or

billions.

The current version of LAMMPS is written in C++. In the most general sense,

LAMMPS integrates Newton's equations of motion for collections of atoms, molecules, or

macroscopic particles that interact via short- or long-range forces with a variety of initial and/or

boundary conditions. For computational efficiency LAMMPS uses neighbor lists to keep track

of nearby particles. The lists are optimized for systems with particles that are repulsive at short

distances, so that the local density of particles never becomes too large. On parallel machines,

LAMMPS uses spatial-decomposition techniques to partition the simulation domain into small

3d sub-domains, one of which is assigned to each processor. Processors communicate and store

"ghost" atom information for atoms that border their sub-domain. The simulation used in this

study is a weak scaling analysis with the Lennard-Jones liquid benchmark. The dynamics of the

atomic fluid with 864,000 atoms per processor for 100 time steps is timed. The execution time

and parallel efficiency is shown in Figure 4.
LAMMPS; Execution Time With Lennard Jones Input

Weak Scaling with 864,000 atoms/PE

0

50

100

150

200

250

300

1 10 100 1000 10000

Number of Processors

E
x

e
c

u
ti

o
n
 T

im
e

,
S

e
c
s

Thunderbird

Red Storm

LAMMPS; Parallel Efficiency With Lennard Jones Input

Weak Scaling with 864,000 atoms/PE

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

Number of Processors

P
a
ra

ll
e
l
E

ff
ic

ie
n

c
y

Thunderbird

Red Storm

Figure 4. LAMMPS Performance on Red Storm and Thunderbird

http://www-unix.mcs.anl.gov/mpi

 - 7 -

The reason that Red Storm and Thunderbird show similar performance is because

LAMMPS has a high computation to communication time ratio and the message exchanges are

implemented very efficiently. LAMMPS divides the computational three dimensional space into

three dimensional sub-volumes, and makes the sub-volumes as cubic as possible. The amount of

data exchanged is proportional to the surface area of the sub-volume. This favorable volume to

surface ratio leads to less than 3% MPI overhead for all the processor counts as shown in Table 3

for this weak scaling analysis. This Red Storm data was obtained using CrayPat instrumentation

tool. The data for Thunderbird would be similar and is not shown as there is insignificant

difference in performance between the two systems except at 2048 processors.

Table 3. LAMMPS Red Storm MPI overhead
Num
PEs 4 8 16 32 64 128 256 512 1024 2048

% time
in MPI 0.4 1.5 0.9 1.5 2.1 1.5 2.1 1.8 2 2.4

d) SIERRA/Presto:

 Presto is a Lagrangian, three-dimensional explicit, transient dynamics code for the

analysis of solids subjected to large, suddenly applied loads [9]. Presto is designed for problems

with large deformations, nonlinear material behavior, and contact. There is a versatile element

library incorporating both continuum and structural elements. The contact algorithm is supplied

by ACME [10]. The contact algorithm detects contacts that occur between elements in the

deforming mesh and prevents those elements from interpenetrating each other. This is done on a

decomposition of just the surface elements of the mesh. The contact algorithm is communication

intensive and can change as the problem progresses.

The analysis used in this investigation is the Brick Walls problem consists of two sets of

two brick walls colliding with each other. It is a weak scaling investigation where each

processor is assigned 80 bricks. Each brick is discretized with 4 x 4 x 8 elements, for a total of

10240 elements per processor. Each brick is located on one processor so the only

communication for the finite element portion of the code is for the determination of the length of

the next timestep. As the problem grows with the number of processors, the contact problem

also grows. Figure 5 shows the parallel performance of Presto on this problem. Since each

brick is assigned to one processor, the communication for the finite element portion of the

simulation is reduced to a few global communications to determine the length of the next time

step. The contact portion of the calculation, however, involves communication in several phases.

First, a small amount of information is communicated to allow for the calculation of the new

decomposition. Then the face information for the surface elements needs to be redistributed to

the new decomposition. After contact detection is performed, then a smaller amount of

information representing the forces on the nodes is communicated back to the original

decomposition. The resulting communication pattern is not well structured and can involve the

sending of a large number of small messages to processors that may not be nearby. The rather

rapid increase in run time after 256 processors on Thunderbird is suspected to be a consequence

of the contact algorithm’s sensitivity to latency and due to the increase in the maximum latency

with processor count as discussed by Leininger and Seager [11].

 - 8 -

Presto Execution Time per time step

Weak Scaling; walls impact with 10240 elements/PE

0

200

400

600

800

1000

1200

1 10 100 1000 10000

Number of Processors

E
x

e
c

u
ti

o
n

 T
im

e
,
S

e
c

s Thunderbird

Red Storm

Presto Parallel Efficiency

Weak Scaling; walls impact with 10240 elements/PE

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

Number of Processors

P
a
ra

ll
e
l
E

ff
ic

ie
n

c
y

Thunderbird

Red Storm

 Figure 5. SIERRA/Presto Performance on Red Storm and Thunderbird

e) SAGE:

SAGE is a LANL/SAIC multi-dimensional multi-material Eulerian hydrodynamics code

with adaptive mesh refinement. The code uses second order accurate numerical techniques.

SAGE was tested extensively on Red Storm with simple inputs and complex asteroid impact

input decks in the early days of bringing up Red Storm. SAGE performance has been studied

extensively by Kerbyson, et.al.,[12] and is frequently used by LANL to predict performance of

new HPC architectures, using their application performance model[4]. We have used SAGE

(version 20030505) to investigate scaling characteristics of Thunderbird and Red Storm. The

code was executed in a weak-scaling mode with a constant sub-grid per processor, thereby

increasing the global problem with increasing processor count. The input deck used is called

timing_c and the problem was set up with approximately 80,000 cells per process, and it

performs only hydro calculations. This input deck imposes a high communication time to

computation time ratio. Figure 6 shows the wall time and parallel efficiency with this input

deck. The parallel efficiency is calculated using the 2 processor timing as the reference.

SAGE; Execution Time With timing_c input

Weak Scaling with 80,000 cells/PE

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000

Number of Processors

E
x
e
c
u
ti
o
n
 T

im
e
,
S

e
c
s Thunderbird

Red Storm

Thunderbird;ompi1.2.3

SAGE; Parallel Efficiency With timing_c input

Weak Scaling with 80,000 cells/PE

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

Number of Processors

P
a
ra

ll
e
l
E
ff

ic
ie

n
c
y

Thunderbird

Red Storm

Tunderbird; ompi1.2.3

Figure 6. SAGE Performance on Red Storm and Thunderbird

MPI profiles of the runs at 64, 256, and 1024 processors appear in Table 4, comparing the

MPI overhead. From Kerbyson’s [10] performance model we know that the communication is

dominated by gather/scatter operations particularly in the z-direction exchanging boundary cell

information and also by hundreds of MPI_Allreduce operations 4 bytes long at each time step.

The large increase in MPI_Allreduce time in Thunderbird was associated with the release 1.1.2

of OpenMPI used in most of our performance measurements. This was confirmed by allreduce

timings shown in Figure 10 in the last section on performance scaling analysis. The linear

increase in allreduce time with 1.1.2 is corrected in the later release 1.2.3. The allreduce curve

for Thunderbird measured more recently with 1.2.3, in fact follows very close to the performance

curve for Red Storm showing a logarithmic growth with number of processors. On observing

this improvement the sage performance was measured again using the OpenMPI 1.2.3 release

and clearly the execution time is significantly better and the trend is quite similar to Red Storm

as shown in Figure 6. The parallel efficiency plot still shows a 10% to 20% performance

 - 9 -

advantage for Red Storm.

 Table 4. Sage MPI Profile comparison

Num

Procs

%

Total

MPI

time;

Red

Storm

% MPI Time

in

gather/scatter;

Red Storm

% MPI

time in

Allreduce;

Red

Storm

% Total

MPI time;

Thunderbird

% MPI Time

in

gather/scatter;

Thunderbird

% MPI time

in Allreduce;

Thunderbird

64 27.7 59 27.4 45.79 64.36 28.43

256 33.1 46.7 32.1 64.55 37.77 48.27

1024 40.4 57.2 30.7 82.10 30.2 55.5

f) ICARUS/DSMC:

The Direct Simulation Monte Carlo (DSMC) method is the only proven method for

simulating noncontinuum gas flows because continuum methods break down where particles

move in ballistic trajectories with mean free path larger than cell dimensions, often because the

device is small (micro-or nano technology) or the fluid is very low pressure as in plasma or

upper atmosphere. Unlike most flow-simulation methods, DSMC uses computational molecules

(“simulators”) that mimic real molecules by moving through space, reflecting from solid

boundaries, and colliding with one another. By sampling the velocities of large numbers of

computational molecules, the gas flow is determined.

Since DSMC is a Monte Carlo technique using computational molecules, the phases of

computation corresponding to movement, reflection and collision of the molecules parallelizes

easily. However, based on the density distribution and the decomposition of the particle grid,

between stages of computations, there could be significant messaging overhead as particles

migrate among the cells. Unsteady DSMC simulations for a two-dimensional microbeam

investigated by Gallis and Torczynski [13] is used to set up a weak scaling study, fixing the

number of simulators per processor. Figure 7 shows the wall clock time for thousand time steps

and the corresponding parallel efficiency.

ICARUS DSMC; Execution Time

Weak Scaling with 8125 simulators/cell/PE

0

0.005

0.01

0.015

0.02

0.025

0.03

0 256 512 768 1024 1280 1536 1792 2048

Number of Processors

E
x

e
c

u
ti

o
n

 T
im

e
,

h
rs

Thunderbird

Red Storm

ICARUS DSMC; Parallel Efficiency

Weak Scaling with 8125 simulators/cell/PEE

0

0.2

0.4

0.6

0.8

1

1.2

0 256 512 768 1024 1280 1536 1792 2048

Number of Processors

P
a

ra
ll

e
l

E
ff

ic
ie

n
c

y

Thunderbird

Red Storm

Figure 7. DSMC/ICARUS Performance on Red Storm and Thunderbird

Towards understanding the performance seen in Figure 7, the MPI overhead of runs at

64, 256, and 1024 processors is shown in Table 5. The major computational stages at each time

step are: a) create particles, b) move particles, c) communicate particles that have moved to cell

 - 10 -

owned by another processor, d) compute electron / particle chemistry, e) compute monte-carlo

collisions, f) solve EM field, and h) output cell, surface data at requested frequency. Depending

on the problem, some of the stages such as the electromagenetic field solve in this microdevices

example are not invoked. Outside the key computational loop are data input and results output

whose computational overhead is negligible in comparison to the cost of resolving the flow over

typical thousands of time steps. The principal communication operation at each computational

stage is the communication of the simulator/particle (position, velocity, etc.) information to the

target processor that now has these new particles within its cells.

Table 5. ICARUS MPI Profile comparison

Num

Procs

% Total

time in

MPI; Red

Storm

% Total time

in MPI;

Thunderbird

64 14.6 37.9

256 26.6 56.0

1024 31.0 75.6

This is implemented in the code using an MPI_Reduce_scatter call that sets up the

send/receive pairs between processors for all the particles that need to be exchanged. This is a

global synchronous operation and the time registered under MPI profile for this operation

dominates the communication time. However looking at the details of the profile shows that

load imbalance in the move phase impacts this global operation as it does not begin to do the

actual reduce_scatter till last slowest processor has completed its move phase. Because of the

physical geometry of the MEMS device and variations in the number of simulators per cell this

load imbalance has a significant effect on parallel performance. This is evident from the MPI

time increasing for both Red Storm and Thunderbird in Table 5. However the compounding

effect slower message transfer, slower global operation in OpenMPI 1.1.2, together with

influence of operating system noise interference in global operations [15] results in the much

higher MPI overhead observed for thunderbird. Work is in progress to understand quantitatively

the impact of each of these and improve the performance on Thunderbird.

g) CTH:

CTH is an explicit, three-dimensional, multimaterial shock hydrodynamics code which

has been developed at Sandia for serial and parallel computers. It is designed to model a large

variety of two- and three-dimensional problems involving high-speed hydrodynamic flow and

the dynamic deformation of solid materials, and includes several equations of state and material

strength models [14]. The numerical algorithms used in CTH solve the equations of mass,

momentum, and energy in an Eulerian finite difference formulation on a three-dimensional

Cartesian mesh. CTH can be used in either a flat mesh mode where the faces of adjacent cells

are coincident or in a mode with Automatic Mesh Refinement (AMR) where the mesh can be

finer in areas of the problem where there is more activity. We will be using the code in a flat

mesh mode for this study.

The shaped-charge consists of a cylindrical container filled with high explosive capped

with a copper liner. When the explosive is detonated from the center of the back of the

 - 11 -

container, the liner collapses and forms a jet. The problem is run in quarter symmetry and

includes a target material. The weak scaling analysis with CTH was setup with 90x216x90

computational cells per processor. Figure 8 shows the wall clock time per time step and the

corresponding parallel efficiency.

By using the code in flat mesh mode, the communication patterns are fairly simple and

fixed for the entire calculation. The problem space is a rectilinear grid of cells where each

processor has a rectilinear sub grid of cells. The processors’ domains are also arranged in a grid

so that if two processors’ domains meet at a face, they share the entire face. Quantities are

exchanged at regular intervals across these faces, so each processor exchanges information with

up to six other processors in the domain. These messages occur several times per timestep and

are fairly large since a face can consist of several thousand cells which have forty quantities in

this simulation which are exchanged. For this simulation, there are processors that communicate

with six other processors once the number of processors in the simulation reaches 128. There are

also a few global communications to determine quantities such as the length of the next timestep.

CTH Execution Time per time step

Weak Scaling; shaped charge; 90x216x90 cells/PE

0

5

10

15

20

25

1 10 100 1000 10000

Number of Processors

E
x

e
c

u
ti

o
n

 T
im

e
,

S
e

c
s

Thunderbird

Red Storm

CTH Execution Time per time step

Weak Scaling; shaped charge; 90x216x90 cells/PE

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

Number of Processors

P
a

ra
ll

e
l

E
ff

ic
ie

n
c

y

Thunderbird

Red Storm

Figure 8. CTH Performance on Red Storm and Thunderbird

Workload Performance Scaling Analysis:

As stated in the introduction we have analyzed the performance of various applications

that constitute our workload with a view to understanding why we see differences in

performance between the two compute systems considered. In this section we present a simple

analysis of the efficacy of the two systems against the work load. It is recognized that this

analysis may not correctly represent the current and future workload that would be undertaken in

these two systems. Application scaling behavior is strongly dependent on the amount of

computation assigned per processor, which in turn is a function of the model size (or such similar

parameter) that influences the compute time to communication time balance. However, we hope

to understand through this analysis, computer architectural balance issues that have big impact

on matching the workload to the system. One thing that we observed is despite Thunderbird’s

Intel processors having a clock speed 50% larger than Red Storm’s AMD processors, one

processor performance is very similar between these two machines. No easy explanation is

perhaps appropriate without further instrumentation and analysis considering the widely varying

nature of these applications, other than the observation that the better bandwidth of the Opteron

seems to compensate for the lower clock speed. The first obvious conclusion that can be drawn

from these application performance charts is that for many of our usual analysis needs that fall in

64 to 256 processor range, the performance of the capacity cluster is good. This is further

evident from the efficiency ratio between Red Storm and Thunderbird at a few discrete processor

 - 12 -

configurations listed in Table 6.

Table 6. Efficiency ratio, Red storm to Thunderbird

Apps.\PEs 64 256 1024

ITS 1.048 1.101 2.121

SAGE 1.590 1.692 3.413

Fuego 0.999 1.933 10.133

DSMC 1.385 1.800 3.943

LAMMPS 1.074 1.109 1.108

CTH 1.183 1.135 1.136

Presto 1.091 1.214 2.563

To analyze this further it is instructive to use a simple model of parallel efficiency as, E =

1 / (1 + f), Where f is the ratio of communication time to compute time. One way to investigate

the impact of the parameter, f, is to plot parallel efficiency as function of communication load to

computation load.

Parallel Efficiency and Ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

0.001 0.01 0.1 1

Communication to Computation Ratio

P
a
ra

ll
e
l
E
ff
ic
ie
n
c
y
 (
&
 R

a
ti
o
)

Bytes/flop 0.4

Bytes/flop 0.1

Efficiency Ratio

L
A
M

M
P
S
,
1
0
2
4
 P

E
s

IC
A
R
U
S
,
2
5
6
 P

E
s

P
R
E
S
T
O

,
1
0
2
4
 P

E
s

Figure 9. Simple parallel efficiency model and impact of communication to computation

ratio of different applications

When this ratio is multiplied by the key platform balance characteristic, Bytes/Flop, a

plot such as shown in Figure 9 may be constructed. In this figure possible approximate

Bytes/Flop balance ratio of 0.4 and 0.1 is taken to represent Red Storm and Thunderbird,

respectively. The ratios result from using a measured MPI ping-pong bandwidth of 1.9 GB/s for

Red Storm and 700 MB/s for Thunderbird, (see Figure 10 below), while using their peak flop

rate from Table 2. Also shown in the plot is the efficiency ratio between these two cases. This

chart in conjunction with the Table 6 above and knowledge of the application and associated

algorithms sheds much light on the impact of balance on scalability. An application like

 - 13 -

LAMMPS with a couple of percent MPI overhead yields similar performance, while for

ICARUS/DSMC with 20-30% MPI overhead we begin to observe factor of two efficiency ratio.

Another probable cause for the lower parallel efficiency of Thunderbird is the cost of

global operations as typified by the allreduce time shown in Figure 10. At the time of writing

this paper, the almost order of magnitude increase (after 128 processors) in time for an eight byte

allreduce on Thunderbird when compared to Red Storm, is suspected to result from non-

optimized global operations after the recent upgrade to OpenMPI 1.1.2. But it is certainly a

major source for the poor efficiency in an application like ICARUS requiring global operations

between fine grained particle movement computations.

MPI All_Reduce (8 bytes) Execution Time

1

10

100

1000

10000

100000

1 10 100 1000 10000

Number of Processes

T
im

e
 i

n
 M

ic
ro

s
e

c
o

n
d

s

Thunderbird; OMPI 1.1.2

Red Storm

Thunderbird; OMPI 1.2.3

Ping Pong Bandwidth

0

500

1000

1500

2000

2500

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Message Size (Bytes)

B
a

n
d

w
id

th

(M
B

y
te

s
/s

e
c

) Red Storm Thunderbird

Figure 10. MPI Allreduce and ping-pong performance comparison

Our measurements on Thunderbird showed up to 30% variation in run times, whereas

variations on Red Storm were less than 2-3%. For the results presented in this paper, we used

the best times that we observed. Thunderbird run time variations were observed in as few as 64

processor jobs. The cause for the variation is suspected to be OS noise sources, similar to the

observations by other investigators [14], although job placement on the mesh leading to network

contention is also likely to play a part. These jobs were run while the machines were in

dedicated mode, so we did not have interference from other jobs being on the machines. As

simple test, parallel independent computations for 100 seconds (a matmul loop was used) on 100

processors shows a maximum variation of 0.4% on Red Storm while variations on Thunderbird

were as high as 2.5%. Since no network activity is involved this variation is suspected to be

caused by OS interrupts. A similar simple test, to measure impact of variations in

communication operations was constructed by 50 pairs of nodes exchanging 2GB messages for a

nominal total run time of 100 seconds. Red Storm tests showed a maximum difference in time of

3% between any pair of nodes, while Thunderbird tests showed maximum difference of 42% in

the run time between any pair of nodes. This implies that applications that spend significant

fraction of their compute cycle time in messaging are likely to see degraded performance,

especially if there are frequent global operations or barriers requiring all the processors to synch

up.

If we take the work load percentages as defined in Table 1 and construct a weighted

 - 14 -

efficiency ratio between Red Storm and Thunderbird using the parallel efficiency charts that

have been identified for the applications constituting most of the work load, a chart as shown in

Figure 11 emerges. It provides a broad picture of the efficiency benefits a system like Red Storm

affords on account of its better architectural balance albeit at higher investment costs with a set

of measured or estimated workload. We used the best data we had for comparing Red Storm to

Thunderbird with the weights shown on the caption in Figure 11. Interestingly a similar analysis

conducted in the context of the JASONs review [16] using parallel efficiency ratio between

ASCI-RED and Sandia’s Cplant, benchmarking the applications constituting the workload, lead

to a similar conclusion. Such a chart may be used in a management context to gauge the return

on investment between a capability and capacity system. On the other hand, as noted in the

introduction, the justification for large capability system may transcend monetary ROI

considerations.

Figure 11. Workload percentage weighted parallel efficiency ratio for Red

Storm/Thunderbird and ASCI-Red/Cplant

Conclusions:

From performance analysis of application workload encompassing several applications to

thousands of processors, we have measured parallel efficiency ratio between a tightly integrated

HEC system, Red Storm, and a large InfiniBand cluster, Thunderbird. Applications whose

communication time to computation time ratio grows as a consequence of the inherent algorithm

or as a consequence of poorer bytes/flop ratio at large processor counts, lead to less than desired

parallel efficiency. Such applications reveal a factor of 2 to 10 better performance on a tightly

integrated HEC system like Red Storm. This analysis also investigates the non-linear increase

observed bytes/flop ratio on commodity clusters and postulates that OS noise and/or network

contention and/or lack of maturity of the interconnect network software layers may be source of

the differences seen between Red Storm and Thunderbird. While this analysis exposes the

symptoms, further work remains in finding its root cause and remedying the deficiencies. Peak

bytes to flop ratio between the two systems is quite reasonable, but does not explain the

differences in parallel efficiencies at large processor counts.

Weighted Combined Efficiency Ratio
2004 Weights:PRESTO=0.34, SALINAS=0.16, LAMMPS=0.13, DSMC=0.11, CTH=0.074, ITS=0.08

2007 Weights:PRESTO=0.34, LAMMPS=0.13, DSMC=0.27, CTH=0.074, ITS=0.08

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

32 64 128 256 512 1024 2048

Number of Processors

E
ff
ic

ie
n
c
y
 R

a
ti
o

Red Storm/Thunderbird

ASCI-Red/Cplant@2004

 - 15 -

References:

1) “2004 Technical Computing Market Results by New Application Workload Segments,”

IDC Report #IDC00735, November 2005

2) “A Platform Strategy for the Advanced Simulation and Computing Program,” Meisner,

R., NA-ASC-113R-07-Vol.1-Rev.0, SAND 2007-4343P, August 2007

3) “Scientific Application Performance on Candidate PetaScale Platforms,” Oliker, L., et.al.,

IPDPS, March 24-30, 2007, Long Beach, CA

4) “A Performance Comparison through Benchmarking and Modeling of Three Leading

Supercomputers: Blue Gene/L, Red Storm, and Purple.” Hoisie, A., et. al., Proceedings of

SC06, Tampa, FL, November 2006

5) “SIERRA: A Software Environment for Developing Complex Multi-Physics

Applications,” Edwards, H.C., and Stewart, J.R., First MIT Conference on Computational

Fluid and Solid Mechanics, Bathe, K.J., editor, Elsevier Scientific, 2001

6) “SIERRA/Fuego: A Multi-Mechanics Fire Environment Simulation Tool,” Domino, S.

P., Moen, C. D., Burns, S. P., and Evans, G. H., AIAA Paper 2003-0149, 41st AIAA

Aerospace Sciences Meeting, Reno, NV, January 2003

7) “Performance Analysis, Modeling, and Enhancement of Sandia’s Integrated TIGER

series (ITS) Coupled Electron/Photon Monte Carlo Transport Code,” Rajan, M., et.al.,

LACSI Symposium, Santa Fe, NM Oct. 11-13, 2005

8) http://lammps.sandia.gov

9) Presto User's Guide Version 1.05, J. Koteras, Richard. and Gullerud, Arne. S., Sand

Report SAND2003-1089, April 2003

10) “ACME Algorithms for Contact in a Multiphysics Environment API Version 1.0,”

Brown, K.H., Summers, R.M., Glass, M.W., Gullerud, A.S., Heinstein, M.W., and

Jones, R.E., Sand Report SAND2001-3318, October 2001

11) “To Adapt, or Not to Adapt, That is THE Question,” Leininger, M., and Seager, M.,

Open Fabrics Developers Workshop, Sonoma, CA, April 2007.

12) “Predictive Performance and Scalability Modeling of a Large-Scale Application,”

Kerbyson, D.J., et.al., SC 2001, , Denver, CO; ACM 1-58113-293-X/01/0011, November

2001

13) “ An improved Reynolds-Equation Model for Gas Damping of Microbeam Motion,”

Gallis, M.A., and Torczynski, J.R., Journal of Microelectromechanical Systems, Vol. 13,

No. 4, August 2004

14) “CTH: A Software Family for Multi-Dimensional Shock Physics Analysis,” Hertel, E.S.

Jr., Bell, R.L., Elrick, M. G., Farnsworth, A.V., Kerley, G. I., McGlaun, J. M., Petney, S.

V., Silling, S. A ., Taylor, L., Yarrington, P.A., Proceedings, 19th International

Symposium on Shock Waves 1, 274ff (Université de Provence, Provence, France), 1993

15) “The Case of the Missing Supercomputer Performance: Achieving Optimal performance

on the 8,192 Processors of ASCI Q,'' Petrini, F., Kerbyson, D., and Pakin, S.,

IEEE/ACM SC2003, November 2003

16) “Effectiveness of Platforms on Engineering Codes,” Leland, R., JASONS Review

Report, Sandia National Laboratory OUO document, September 2004.

